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INTEGRATING-MATRIX METHOD FOR DETERMINING 

THE NATURAL VIBRATION CHARACTERISTICS 

OF PROPELLER BLADES* 

By William F. Hunter 
Langley Research Center 

SUMMARY 

A numerical method is presented for determining the natural lateral vibration char
acterist ics of a rotating twisted propeller blade having a nonuniform, unsymmetrical c ros s  
section and cantilever boundary conditions. Two coupled fourth-order differential equa
tions of motion a r e  derived which govern the motion of such a beam having displacements 
in two directions. A development of the integrating matrix, which is the basis of the 
method of solution, is given. By expressing the equations of motion in matrix notation, 
utilizing the integrating matrix as an operator, and applying the boundary conditions, the 
differential equations are integrated and formulated into an eigenvalue problem whose 
solutions may be determined by various methods. Numerical examples a r e  presented, 
and the computed results a r e  compared with experimental data and exact solutions. 

INTRODUCTION 

The determination of the natural vibration characteristics is of fundamental impor
tance in the design of propeller blades. Propellers often have serious resonant vibration 
problems with the excitation frequencies usually being equal to  the rotational speed or 
some multiple of it. To insure that conditions susceptible to  resonance do not exist within 
the range of operating speeds, it is necessary that the natural frequencies be determined 
accurately as a function of the rotational speed. Also, the natural modes, because of 
their  orthogonality relationships, a r e  very suitable for use in "series" solutions of 
response problems. 

This paper formulates a numerical solution for the natural vibration frequencies 
and the modal functions of twisted propeller blades. In addition t o  presenting a means 

*Most of the information contained herein was included in a thesis entitled "Inte
grating Matrix Method for Determining the Natural Vibrations of a Rotating, Uns mmetri
cal Beam With Application t o  Twisted Propeller Blades" submitted in partial ful9illment of 
the requirements for the degree of Master of Science in Engineering Mechanics, Virginia
Polytechnic Institute, Blacksburg, Virginia, June 1967. 
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fo r  determining accurately the vibration characteristics of propeller blades, this paper 
presents a numerical method for solving linear ordinary differential equations. 

The twisted propeller is idealized in this analysis as a rotating cantilevered beam 
which has a nonuniform and unsymmetrical cross section. The t e r m  "twist" is used t o  
define a variable orientation along the length of the beam of the principal axes relative to 
the plane of rotation and is not to  be confused with torsion. Either twist o r  an unsym
metrical c ros s  section causes the beam to  have t ransverse displacements in two direc
tions. Two coupled differential equations, which describe the behavior of such a beam 
having motions in two directions, and the associated orthogonality relationships are 
derived in the appendixes. 

A number of studies have been published concerning the determination of the natural 
vibration characteristics of propeller blades by energy methods, by adaptations of the 
Holzer method, and by the Stodola method. Earl ier  analyses neglected the twist of the 
blades and also assumed the cross  sections to  be symmetrical. More recent studies 
(refs. 1 t o  4)have treated the twisted propeller which has lateral deflections in two direc
tions. In reference 1 this problem was analyzed through the use of energy principles. 
Extensions of the Holzer method were used in references 2 and 3. Reference 4 gives a 
solution based upon the Stodola method. 

In this paper the integrating matrix is developed as the basis for the method of 
solution. The integrating matrix is a means of numerically integrating a function that is 
expressed in t e r m s  of the values of the function at equal increments of the independent 
variable. It is derived by expressing the integrand as a polynomial in the form of 
Newton's forward-difference interpolation formula. Integrating matrices based upon 
polynomials of degrees one to  seven a r e  given. 

The solution to  the governing differential equations of motion is developed entirely 
in matrix notation. First, the differential equations, which a r e  fourth-order linear homo-

Thisgeneous equations having variable coefficients, are expressed in a matrix equation. 
matrix differential equation is then integrated repeatedly by using the integrating matrix 
as an operator. Next, the constants of integration a r e  evaluated by applying the boundary 
conditions. Finally, the resulting matrix equation is expressed in the familiar concise 
form of the eigenvalue problem. The solutions to  this eigenvalue problem may be 
obtained by any one of several  methods. Two methods which have been utilized for this 
problem a r e  described. The solutions define the natural frequencies and the modal dis
placements. The dominant eigenvalues correspond to  the lower frequencies. 

The continuous problem is treated instead of a discrete or  lumped mass system. 
Integral equations as such and influence coefficients, which are typical of other integra
tion methods for  boundary-value problems, are not used. In developing the solution, all 
functions are in effect represented by high-degree polynomials at the boundaries as well 
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as elsewhere within the beam. Since the polynomials approximate the continuous func
tions very accurately, the integration of these polynomial representations yield extremely 
small  e r ro r s .  In addition to  treating the continuous problem and yielding accurate 
results,  the method is appealing because the numerical solution may be formulated quickly 
from the differential equations and may be easily programed for computations by a digital 
computer. Also, the inputs a r e  generated very simply since they are merely the coeffi
cients appearing in the differential equations. 

Numerical examples a r e  presented to  show that the solution is applicable to propel
l e r  blades and to  give an indication of the accuracy of the method. The computed natural 
vibration frequencies of a rotating propeller blade a r e  compared with experimental data. 
Also, the numerical solutions for the natural vibration characteristics of a nonrotating 
cantilevered beam, which has a uniform and symmetric c ross  section, a r e  compared with 
the exact solutions. 

SYMBOLS 

c ross-sectional a rea ,  in2 (m2) 

acceleration vector 

polynomial coefficient where i = 0, 1, 2,  . . .,r 

element in the jth row and kth column of the matrix [A] where 
j,k = 1, 2,  . . .,n 

constant of integration 

scaling constant 

determinant of the matrix [A] with the ith and (n+i)th rows and the ith and 
(n+i)th columns removed 

shifting operator; modulus of elasticity, lb/in2 (N/m2) 

a rb i t ra ry  function of x 

function of p 

increment of the independent variable x; length of beam interval, in. (m) 
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I moments and product of inertia, in4 (m4) 

i station number 

? ? 
1, J,k unit vectors dong  the X-, Y-,and Z-axes, respectively 

j index denoting jth natural mode of vibration 

ki,kjl,kj2 constants of integration 

2 length of beam, in. (m) 

M bending moment, in-lb (m-N) 

Mj ,k minor of the element aj ,k 

m mass  per unit length, lb-sec2/in2 (N-sec2/m2) 

n number of intervals 

P nondimensionalized independent variable 

R radius of propeller blade, in. (m) 

r degree of polynomial approximation; index denoting the rth natural mode 
of vibration 

-e r position vector 


S index denoting the sth natural mode of vibration 


T axial tensile force, lb (N) 


t time, s ec  


U elastic displacement of the centroidal axis in the X-direction, in. (m) 


A 

U total elastic displacement in the X-direction of a point not on the centroidal 
axis, in. (m) 

4 



V 


Y' 9' 

,k 

P 

E 

x 


52 


w 

-

w 

shear force, lb (N) 

components of the elastic displacement of the centroidal axis in the direc
tions parallel and normal, respectively, t o  the plane of rotation, in. (m) 

vibration amplitude for v and w, respectively, in. (m) 

variable in numerical example 

axes of rotating orthogonal reference f rame 

independent variable; longitudinal body-axis coordinate, in. (m) 

cross-sectional body-axis coordinates which a r e  parallel and normal, 
respectively, to the plane of rotation when the propeller is in the unstrained 
condition, in. (m) 

inclined cross-sectional body-axis coordinates , in. (m) 

cofactor of the element aj ,k 

orientation of the yl,z' reference with respect t o  the y,z reference, 
deg or rad  

kth forward difference 

longitudinal strain,  in./in. (m/m) 

arbi t rary function 

eigenvalue, sec2 

angular velocity of the propeller blade, rad/sec or  rpm 

natural vibration frequency, rad/sec or  Hz 

angular velocity vector 
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Subscripts: 


i denotes function evaluated at x = X i  where i = 0, 1, 2,  . . ., n 


j denotes jth natural vibration mode 


r denotes degree of polynomial approximation 


y,z denote directions of moments and shear  forces  


y,z,y?,z? denote axes about which moments and products of inertia a r e  taken 


Matrix notation: 


square matrix 

diagonal matrix 

column matrix 

row matrix 

[: 1-l inverted matrix 

c IT transposed matrix 

[I] ,[TI integrating matr ices  

unit o r  identity matrix 

column matrix with all elements unity 

(o! column matrix with all elements zero  

Matrices and the equations by which they a re  defined a r e  as follows: 

c1 
� 1  
0 
L J  

�11 
61 
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Matrix 

PI 

CA.3 

rB1 

LB4 


CLI 
�ml 

�4 
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Matrix 
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ANALYSIS 

In the analysis, a development of the integrating matrix is presented. A statement 
of the governing differential equations and boundary conditions is given. The differential 
equations are expressed in matrix notation and a r e  then integrated numerically by using 
the integrating matrix as an operator. After the evaluation of the constants of integra
tion, an eigenvalue problem results. Also, procedures for solving the eigenvalue problem 
a r e  described. 

Development of the Integrating Matrix 

The integrating matrix is a means by which a continuous function may be integrated 
with the use of a finite-difference approach. This numerical method is based upon the 
assumption that the function f(x) may be represented by a polynomial of degree r as 
given in the following equation: 

f(x) = a. + alx + a2x2 + . . . + arxr (1) 

Let f i  denote the value of the function f(x) at the station x = xi where 
i = 0,  1, 2 ,  . . .,r. If the stations a re  assumed to be equally spaced, then xi = xo + ih 
where h is the spacing interval. Equation (1)may be expressed in the form of Newton's 
forward-difference interpolation formula (ref. 5) as 

+ . . . + 1 p(p - 1) . . . (p - r + l ) A r f o  

where p is the dimensionless quantity 

x - xo p = -
h (3) 

The forward differences appearing in equation (2) a r e  given by 

The shifting operator E is defined by EJfi = fi+j where j = 1, 2, . . .,r and i = 0 
for the interpolation formula in equation (2). 
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Since f(x) = g(p) and since from equation (3) dx = h dp, the integration of f(x) 
f rom X i  to xj is given by 

In proceeding with the development of the integrating matrix, it is convenient to 
choose a specific polynomial. If the function is assumed t o  be approximated by a third-
degree (r = 3) polynomial, then g(p) from equation (2) may be substituted into equa
tion (5) and integrated over each of the three intervals between xo and x3 to  give 

hsxlf(x)dx = -(9f0 + 19fl - 5f2 + f3)24 
xO 

hsx2 24f(x)dx = -(-fo + 13fl  + 13f2 - f3) 
x1 

The function f(x) may be integrated over a large number of equal-length intervals 
by repeated use  of equation (6b). Equation (6b) is chosen since it is applicable to  the cen
t e r  interval and since it has the smallest associated e r r o r  of the three equations. Thus, 
from equations (6) ,  the numerical integration of f(x) over each of the n intervals from 
xo to xn is given by 

-
h
24JX1 f ( x W  = -(9f0 + 19fl - 5f2 + f3) 

xO 

hrX2f(X)& = -(-fo + 13fl + 13f2 - f3)24 
' x1 

X hlxn-l f(x)dx = ~ ( - f ~ - ~+ 13fn-2 + 13fnml - fn) 
n-2 
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The relations in equations (7) may be expressed in matrix notation by 

where 

9 19 -5 


-1 13 13 


h 0 -1 13 


rA4=z0 	 0. -1.. 13..
I 


I 
.... ... .. . . 

I ... . .. .... ... 
.... I 

I 

I 

I .. .... .... ... .... - 0  
I 
 ‘ 0 .  -1 ‘13 .13 .-1 

I 


0 - - - - - - 
-
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The matrix [Ad is an (n + 1) square matrix. As noted ear l ier ,  this matrix is 
based upon a third-degree polynomial. In a s imilar  manner, matrices such as this may 
be obtained by using polynomials of other degrees. In general, such matrices a r e  identi
fied as [Ad where r denotes the degree of the polynomial upon which it is based. 

The integral of f(x) f rom xo to  xi may be obtained by merely summing the 
integrals given for each interval from xo to xi. That is, 

cxi f(x)dx = 
J 
TX1f(x)dx + TX2 f(x)dx + . . . + 

J 
rxi f(x)dx (9). .J 

xO xO xi-l 

This equation is given in matrix notation for i = 0, 1, 2, . . .,n by 

xO [B]{Ixif(x)dx] = {I: i-1 f(X)-> 

where 

SXlf(x)dx 
xO 

JX" f(x)dx 

0 0 


1 0 0 1 

1 1  0. 


1 1  1. 
. 
. 
. 
. 
. 
. 
. 
. .. \ 


'1 ' 0  

1I 
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The matrix [B] is an (n i1) square matrix having a lower triangular a r r ay  of 
unit elements. 

Substituting equation (8a) into equation (loa) and replacing the matrix [Ad by the 
general matrix [A,J gives 

The integrating matrix is now defined as 

PI = CBIP.3 
From this definition, equation (11) becomes 

which is the desired matrix expression. Thus, the premultiplication by the integrating 
matrix of a column matrix defining the function f(x) yields the numerical integration of 
f(x) from xo t o  xi where i = 0, 1,  2 ,  . . .,n. Note that the number of intervals n 
is equal to  o r  greater than the degree r of the polynomial representation. 

As stated in the Introduction, integrating matrices based upon polynomials of seventh 
and lower degree have been determined. Appendix A gives the matrix [Ad for 
r = 1 , 2 , .  . . , 7 .  

In reference 6 an integrating matrix is developed by a different approach. The 
integrand is approximated over two intervals by passing a parabola through three equally 
spaced points. Expressions for the coefficients of the equation of the parabola a r e  deter
mined by solving a set of three simultaneous equations. Then the integrating matrix is 
derived through a series of matrix operations. The integrating matrix obtained is the 
same as that given by the product [B] k.3 of equation (12) for the specific case of 
r = 2 and n = 10. In reference 6 the integratiilg matrix is used to evaluate the integrals 
of an "integral series" solution, which is similar t o  the matrizant method, instead of as 
an operator by which the differential equations may be directly integrated. 

By using Newton's forward-difference interpolation formula, the integrand may be 
represented conveniently by polynomials of any degree. The interpolation formula avoids 
the solving of a set of simultaneous equations since it implicitly contains the polynomial 
coefficients in t e r m s  of the values of the integrand at the equally spaced stations. Also, 
when the integrating matrix presented herein is applied, any number of stations may be 
chosen (so long as n 2 r) since the integrating matrix was developed in general for any 
value of n. 
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Differential Equations and Boundary Conditions 

The derivation of the differential equations of motion, along with the statement and 
discussion of the assumptions made, is given in appendix B. A segment of displaced 

t 

Sketch a 

blade is shown in sketch a. The equations of motion fo r  a freely vibrating propeller blade 
having a rotational velocity of a r e  

where the variation of the axial tensile force T with respect to the blade longitudinal 

coordinate x is given by 

dT-+a 2m x = Odx 

Also, in equations (14)and (15) v and w a r e  the in-plane (of rotation) and out-of-plane 
displacements, respectively; m is the distributed mass; w is the natural vibration 
frequency; E is the elastic modulus; Iyy and I,, a r e  the moments of inertia of a r ea  

about cross-sectional body axes which a r e  parallel and perpendicular, respectively, t o  the 
plane of rotation when the blade is in the undeformed position; and Iyz is the product of 

inertia. These relations a r e  applicable to  twisted propeller blades having a nonuniform 
and unsymmetrical c ross  section. 
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The propeller blade is assumed to  have cantilever boundary conditions. Also, the 
axial force at the tip of the propeller blade is zero. The boundary conditions are listed 
in equations (17) t o  (21), where the subscripts 0 and n indicate that the associated 
quantity is evaluated at the fixed end x = xo or  at the free end x = Xn. 

wo = 0 

vo = 0I 

Matrix Integration of the Differential Equations 

Since the differential equations are applicable for all values of x ,  they may be 
written for each of a chosen set of equally spaced stations defined by xi = xo + ih where 
i = 0, 1, 2, . . ., n. Thus, each of equations (14) and (15) determines a se t  of (n + 1) 
equations. These two sets of equations may be combined into a single matrix equation by 
defining 
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r	 > 

wO 


w1 

wn 
{q) = {  } 

vO 

v1 

~ vn, 

K 1 

I
1 "O I 

I 


ml I 


\ I 

\ 
 I


\ 

\ I 


I I 


I 1 


I T1 I 
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PI= 

�4= 

I \ 
\ 

I \ 

where all off-diagonal elements not shown are zero. Also, each partition of [S] is a 
diagonal matrix. By use of the partitioned matrices defined in equations (22), equa
tions (14) and (15) may be expressed in matrix notation as 

where �11is the unit matrix and (0) is a null column vector. 

Since the coupled displacements of the propeller blade lead t o  a partitioned-matrix 
equation, the matrix operator necessary t o  integrate this matrix differential equation is 
given in t e r m s  of the previously developed integrating matrix by 
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r 


l o
L 

for the reason that 

I - - - ! - - -

Because the integration of the differential equations is t o  be performed in matrix 
notation, a clearer  insight into the process may be gained by considering f i r s t  the simple 
equation de/& = f(x,c). Integrating this equation from xo to  X i  gives 

where the constant of integration C1 is equal to  c(xo) and may be determined from a 
boundary condition. The subscript i indicates that the function 5 is evaluated at 
x = xi where i = 0, 1, 2, . . ., n. In equation (25a) the integral, whose integrand is a 
function of the unknown dependent variable e ,  may be expressed by some numerical 
method in t e rms  of the integrand's unknown values corresponding to  x = xj where 
j = 0, 1, 2 ,  . . .,n. Thus, after the numerical integration is performed, equation (25a) 
may be rewritten as 

which gives ci as a function of the xj and j values. Since i = 0, 1, 2, . . .,n, 
equation (25b) represents a set  of (n + 1) simultaneous linear algebraic equations which 
may be solved for the Ti values to  give the numerical solution of the differential 
equation. 

The numerical solution just described is essentially that which is effected when the 
integrating matrix is applied to a first-order differential equation. However, when the 
integrating matrix is used, the set of (n + 1) equations is expressed in a matrix equation 
and all the numerical integrations a r e  performed by a single matrix operation. The 
integrating-matrix approach also allows the numerical solution of higher order differen
tial equations t o  be developed in a compact and orderly fashion. For the propeller blade 
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problem a matrix equation, which is analogous to  equation (25b) and which relates the 
displacements of stations along the propeller blade, is obtained. 

The second t e rm of equation (23) may be integrated numerically by premultiplying 
the t e rm by the integrating matrix [g. Thus, the integration of the equation yields. 

The constant-of-integration matrix is given in general by the 2(n + 1)column matrix: 

Equation (16),which is the force equilibrium relation for the X-direction, may be 
written in matrix notation as 

where 

I
x1 I 

\ 
\ I 
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Also, the second t e r m  of equation (26) may be expressed as 

Substituting equation (28a) into equation (29) and then substituting the result into equa
tion (26) leads to  

Integrating this matrix differential equation by again operating with the integrating 
matrix gives 

Equation (31) may be premultiplied by the inverse of the stiffness matrix [SI and 
then integrated twice. The result after each of the successive integrations is given in the 
following equations: 

+ [y][S]-'{K2} + (K3} = 0 
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The operator matrices [Do3 and Dn ,which are used in evaluating the constant-C J  

of-integration matrices,  are defined as 

r; 0 - - - 0 0 1  
I 1 

0 1 '  
I 

- 0  1 '  All zero 

I
All ze ro  I o - - - - - 0  1 

I 1 I Ielements 
I I  I I 

I O - - - - - 0  1
L J 

In these matrices,  each partition is an (n -t- 1) square matrix. 

The constant-of-integration matrix {Kl) is evaluated by premultiplying equa
tion (26) by [Dn] and applying the boundary conditions given by equations (20) and (21). 

Since [Dd (K1) = {Kl), the premultiplication leads to  

Substituting this expression for (K1) into equation (31), premultiplying the 
resulting equation by , and applying the boundary conditions of equations (19) and 
(21) yields 



--- 

Premultiplying equation (32) by [Do], applying the boundary conditions given in equa
tions (18),and noting that the first row of the integrating matrix consists only of 
ze ro  elements gives 

(K3} = (01 (37) 

To’ 

T1 


{T) = { 	Tn 
} 

TO 

T1 


LTn, 

Premultiplying equation (39a) by [DnJ and applying the boundary condition of equa
tion (21) gives 

If the matrix [F] is defined as 

then equation (39a) may be expressed by 
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Equation (33) requires that the matrix representing the normal axial force T be 
a diagonal matrix; however, the column matrix of equation (42) results since the inte
grating matrix is used to  obtain T. To t ransfer  the elements T i  of the column matrix 
to  a diagonal matrix, let rPd be a diagonal matrix whose diagonal elements a r e  the 
same as the elements of the corresponding rows of the column matrix [F] Em] Ex1 {l). 
Therefore , 

where 

The substitution of equations (35), (36), (37), (38), and (43a) into equation (33) yields 

Dividing equation (44) by w2 and rearranging gives 

where 

A = -
W 

1 
2 (45b) 

[GI = [';32[S] - [F] Em1 (4 5c) 

Equation (45a) is the desired eigenvalue problem which results from the matrix integra
tion of the differential equations. The solutions of the eigenvalue problem define the 
natural vibration frequencies and the associated modal functions. 

Appendix C gives an expression for the stiffness matrix [SI in t e r m s  of the 
moments and product of inertia about a pair of general orthogonal cross-sectional axes. 
Also, by utilizing the unique properties of the stiffness matrix, a relation is developed in 
this appendix which expresses  explicitly the inverse of [SI and thus avoids the inver
sion by usual computational methods. 
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Solutions of the 

The eigenvalue problem defined by 

where 

Eigenvalue Problem 


equations (45) may be rewritten as 


(464 

and 	 (s) is used to  denote the solution corresponding- to  the sth mode of vibration. Note. .  
that the matrix [H] is nonsingular and that the matrix [N] is unsymmetrical. 

A close examination of the product [H]-'[G] shows that the matrix [N] is of 
rank 2n since all the elements of the first and (n + 2)th rows are zero. Since the order 
of [N] is (2n + 2) ,  there are at least two zero eigenvalues (A = 0). This may be proved 

by the expansion of the characteristic equation I [N] - TllI = 0. The modes corre-
I - 

sponding to the ze ro  eigenvalues have no physical significanbe. 

A discussion of the many various methods of solving eigenvalue problems such as 
that of equations (46) is beyond the intent of this paper. However, two methods which haw 
been used to  obtain the solutions of equations (46) a r e  explained briefly in the following 
sections. 

Solution using the QR transformation.- This method of solution is presently 
employed in the most general eigenvalue subroutine used by the computer center at the 
Langley Research Center. First, the matrix [N] of equations (46) is reduced to  upper 
Hessenberg form by elementary similarity transformations (refs. 7 and 8). Next, the 
similarity transformations, known as QR transformations (refs. 7,  9, and lo) ,  of Francis 
a r e  used iteratively t o  reduce further the matrix to an upper triangular matrix whose 
diagonal elements a r e  the eigenvalues. The eigenvectors corresponding to  the real 
eigenvalues a r e  computed by using the inverse iteration method of Wielandt (as discussed 
in ref. 10). Since [N] is unsymmetrical, there is the possibility of complex eigen
values; however, complex eigenvalues have not been encountered in the use of this solu
tion method which does determine any imaginary components. 

The eigenvectors of the check cases on this subroutine were accurate to  10 sig
nificant figures. Thus, it is assumed that the e r r o r s  associated with the numerical 
examples of this paper a r i s e  f rom the numerical integration approximations rather than 
from the solution of the eigenvalue problem. 

Solution using sweeping and iteration.- The sweeping and iteration procedure is a 
well-known and often-used method of solving eigenvalue problems. Iteration is a process 
by which an eigenvector is obtained by repeated premultiplications of a trial vector by a 
coefficient matrix. Applying the iteration process t o  equations (46) gives the first mode 
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of vibration. The higher modes are obtained by using a sweeping matrix to remove the 
lower mode components f rom the trial vector. The sweeping matrix is based upon the 
orthogonality relationship, which is derived in appendix D, between the modes. The 
development of the sweeping matrix fo r  this problem is given in appendix E. Also, a 
proof of the convergence of the iteration procedure is given. 

NUMERICAL EXAMPLES 

The results of two natural vibration problems a r e  presented to  give an indication 
of the accuracy of the analysis and t o  show the effects of the variation of certain param
eters.  The numerical examples considered a r e  a typical propeller blade and a nonro

\
tating, cantilevered, uniform beam having lateral displacements in orily one direction. 
To  verify the applicability of the differential equations of motion to  a practical problem, 
the natural vibration frequencies of the propeller blade were determined numerically and 
compared with experimental data. The uniform-beam problem is analyzed to determine 
how the accuracy is affected by the choice of the integrating matrix and by the number of 
stations, as well as to substantiate further the accuracy of the presented method of 
solution. 

In appendix F, the differential equation of motion for the nonrotating beam having a 
symmetric c ros s  section is integrated and formulated into an eigenvalue problem. This 
eigenvalue problem, along with the one of the propeller blade, was programed for  solution 
by digital computer. For the propeller blade, the inverse of the stiffness matrix as given 
by equations (C6) and (C13)in appendix C was programed. The solutions to  the eigen
value problems were obtained by using the previously described computer subroutine that 
utilizes the QR transformation. 

Propeller Blade 

The propeller blade selected for analysis is the WADC S-5 scale model of refer
ence 11. This blade was chosen since this reference gives a structural  description suf
ficient for the numerical solution as well as experimental data for the natural vibration 
frequencies. The propeller blade is in effect cantilevered at 6 inches (0.1524 m) from 
the center of rotation and the tip of the blade is at a radius of 24 inches (0.6096 m). The 
ratio of the blade thickness to  chord length var ies  from a value of 0.064 at the cantilever 
radius to a value of 0.021 at the tip. The stiffness characteristics are expressed in 
t e r m s  of the moments of inertia about the principal axes whose orientation with respect 
t o  the plane of rotation is given by the twist angle p (see sketch f in appendix C). The 
variation of p f rom the root t o  the tip of the blade is about 40'. In the experimental 
program, tes ts  were made for various angles of pitch. The pitch settings were defined 
by the values of p as measured as x = 0.75R where R is the radius from the center 
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of rotation to  the tip of the blade. With the exception of the rotational speed, all the input 
data necessary fo r  numerical solution are given in table 1 for  the pitch setting of p = Oo 
at 0.75R. Of course, f o r  a different setting, the only change in the input data is a change 
in the values of p by an amount equal t o  the setting. 

In order to compare numerical results with test data, solutions were computed for 
cases corresponding t o  the pitch settings and rotational speeds of the experimental inves
tigation. The first- and second-mode natural frequencies, but not mode shapes, were 
determined experimentally in an evacuated chamber for various rotational speeds at pitch 
settings of Oo, 20°, and 40°. The numerical solutions were obtained by using 10 stations, 
which correspond t o  nine 2-inch (0.0508-m) intervals, t o  describe the cross-sectional 
properties of the propeller blade. Also, a fifth-degree integrating matrix was used in 
computing the solutions. The terminology "fifth degree" denotes the integrating matrix 
based upon a fifth-degree polynomial (r = 5). 

The experimentally and analytically determined natural vibration frequencies are 
given in table 2 for the various cases. This table also gives the percent e r r o r  which is 
the difference between the experimental and computed values expressed as a percentage 
of the experimental value. These results a r e  presented in the manner typical of 
propeller-blade analyses in figure 1, which shows graphically the natural frequencies as 
a function of the rotational speed. The dashed lines (labeled lP, 2P,and 3P)of the fig
u r e  relate the natural frequencies as dimensionless multiples of the rotational speed. 
The intersections of the frequency curves with these dashed lines define the critical 
rotational speeds (i.e., the speeds at which excitation is most likely to  occur). It is 
observed that the existence of a crossing of the 1P line is dependent upon the pitch of the 
propeller blade. It is also noted that the pitch has very little effect on vibration fre
quencies of modes above the fundamental. 

A comparison of the modal displacements is not possible since the mode shapes 
were not determined in the experimental investigation. However, for the sake of pre
senting examples of typical propeller modes and showing how the mode shapes a r e  affected 
by rotational speed, figure 2 illustrates the three lowest computed modal functions at 
rotational speeds of 0 and 6016 rpm with the blade having a pitch angle of p = 20° 
at 0.75R. 

Uniform Beam 

Numerical solutions for the natural vibration characteristics of a cantilevered uni
form beam were computed by using various integrating matrices and various numbers of 
stations. In order to  simplify the comparison of the numerically determined natural fre
quencies with the frequencies of the exact solutions as given by reference 1 2 ,  the inputs 
m and h were chosen t o  be equal to  unity and E1 was set  equal to n4. Thus, the 
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quantity EI/mZ4 is always equal to unity since the length Z is equal t o  nh. For such 
a beam, the exact natural vibration frequencies for the first eight modes are as follows: 

Mode Vibration frequency,
rad/sec 

3.51601 54 
22.034492 
61.697214 

120.90192 
199.85953 
298.55553 
416.99079 
555.16525 

0, 


f w  - w  )lo( 
Figures 3 to 9 present the percent e r r o r s ,  as defined by \ ~- computed exact 

Wexact 
of the natural frequencies computed with the use of integrating matr ices  of degrees one 
to  seven, respectively. Each figure gives the e r r o r  percentage of the frequencies for t k  
first eight modes as a function of the number of stations used in the computations. The 
dashed curves in the figures denote percent e r r o r s  having a negative sign. 

A small  portion of the generated modal data is presented in order  t o  give an indi
cation of the accuracy of the various computed mode shapes and t o  show how the accura 
is affected by the degree of the integrating matrix and by the number of intervals. 
Tables 3 t o  6 give a comparison of the modal displacements computed by using the vari  
ous integrating matrices with those of the exact solution. For  the computation of the di 
placements, both 25 intervals (n = 25) and 10 intervals (n = 10) were used, and the dis
placement at the f r ee  end of the beam was taken as two units. However, the data a r e  
presented only at x/Z increments of 0.2, which is adequate for comparison purposes 
and for indicating the accuracy of the computed modal functions. 

DISCUSSION 

Discussion of Accuracy 

The results presented in the previous section show that the governing differential 
equations a r e  indeed applicable to  propeller blades. Table 2 gives a comparison of com
puted natural frequencies with experimentally determined frequencies. The fact that the 
e r r o r s  remain relatively small  over the wide range of rotational speed and pitch setting 
indicates that the differential equations adequately describe the motion of the typical 
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propeller blade. The e r r o r  percentage averages less than 2 percent with a maximum 
value of 3.6 percent. All the computed natural frequencies are greater  than the experi
mental frequencies except fo r  one case. This indicates that slight inaccuracies may 
possibly exist in the input data fo r  stiffness and/or distributed mass.  In addition to  
establishing the applicability of the governing equations, these results indicate that the 
presented integration method is an accurate numerical method for solving differential 
equations. 

An examination of figures 3 to 9,  which give the percent e r r o r  of the computed 
natural frequencies for a uniform beam, reveals the significance of the degree of the 
polynomial representation used in developing the integrating matrix. For a given number 
of intervals, it is seen that the use of the first-degree integrating matrix, which is based 
upon trapezoidal integration, results in e r r o r s  much greater  than those given by matrices 
based upon second- and higher degree polynomials. The e r r o r s  of the frequencies com
puted with the second- and third-degree integrating matrices a r e  of the same magnitude, 
with the third-degree matrix being slightly more accurate. The fourth-degree integrating 
matrix yields accuracy which is significantly better than that of the third-degree matrix. 
For an e r r o r  limit in the frequencies of about 1percent, which is satisfactory for most 
engineering applications, the figures show that the fourth-, fifth-, sixth-, and seventh-
degree integrating matrices each require about the same number of intervals. When 
these integrating matr ices  a re  used, it is seen that an accuracy of 1 percent will result 
if the number of intervals is slightly greater  than twice the number of the highest mode 
t o  be determined. However, t o  obtain very small  e r r o r s  in the frequencies, the number 
of intervals required appears to decrease as the degree of the integrating matrices 
increases. 

The seventh-degree integrating matrix (fig. 9) yields e r r o r s  of 0.001 percent when 
the number of intervals is approximately four t imes the number of the mode. The results 
for this example indicate that the solution method would be very useful in applications 
where extreme accuracy is desired. For example, the first-mode frequency had an e r r o r  
of only 0.000014 percent when the seventh-degree integrating matrix with seven intervals 
was used. 

The curves of these figures show that the solution is apparently stable as the num
ber  of intervals increases. There is an oscillation (change in sign) in the value of the 
percent e r r o r  fo r  a few of the curves (see figs. 5 t o  9); however, in all cases  the numeri
cal solution appears t o  converge, as expected, to the exact solution as the number of 
intervals increases. 

Table 3 shows that all the computed first-mode displacements a r e  very accurate. 
In fact, a maximum e r r o r  of 0.00001 in the modal displacements is given by all the inte
grating matrices except the first-degree matrix when 25 intervals a r e  used and the 
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first- and second-degree matr ices  when 10 intervals are used. The higher modes 
(tables 4 to 6) show that the accuracy increases with the degree of the integrating matrix. 
When the seventh-degree matrix and 25 intervals are used, the maximum e r r o r  in the com
puted modal displacements continues to be 0.00001 f o r  the higher modes. As expected, 
the accuracy is significantly reduced for the higher modes that are computed with 10 inter
vals. However, with only 10 intervals the seventh-degree integrating matrix yields results 
for the fourth mode which are satisfactory for most engineering problems. The computed 
fourth-mode characteristics have a maximum e r r o r  in the modal displacements of less 
than 0.01 and an e r r o r  in the natural vibration frequency of 0.52 percent. 

The uniform-beam vibration problem demonstrates that in general, the accuracy of 
the computed vibration characteristics increases with the degree of the integrating matrix 
and with the number of stations. Also, it shows that for a given accuracy and a given 
mode the number of stations required is small relative to the number needed for other 
numerical methods. Obviously, the higher degree integrating matr ices  are to  be preferred 
since the same accuracy can be obtained with a fewer number of stations, which means 
less  computational time. Integrating matrices based upon polynomials of degree greater  
than seven may be developed, but the presented results indicate that the improvement in 
the accuracy becomes l e s s  with each increase in the degree of the polynomial. 

The accuracy of the uniform-beam solutions is thought t o  be typical of the accuracy 
which may be expected for  the propeller-blade problem and fo r  other beam vibration 
problems which use the integrating matrix to obtain solutions. The uniformity of the 
example beam is not thought to be a factor that enhances significantly the accuracy of the 
method since it is the modal function which is first integrated numerically. 

The integrating matrix yields exact integrals when the integrand is of degree equal 
t o  or  less  than the degree of the polynomial upon which the integrating matrix is based. 
However, when the degree of the integrand is greater  than the degree of the polynomial, 
the polynomial representation approximates the integrand, and thus, the integrals given 
by expressions such as equations (6) become numerical approximations. The e r r o r  asso
ciated with each integral approximation may be determined by expressing the integral as 
a Taylor's s e r i e s  and then substituting finite-difference approximations for the deriva
tives. It can be shown that the e r r o r s  of the approximations used in developing the inte
grating matrices are O(hr+2) where r is the degree of the assumed polynomial. For 
example, the e r r o r  of each of equations (6) is of order  h5. 

The QR transformation method, which obtains all the eigenvalues at once and does 
not depend on the eigenvectors, is much preferred over the sweeping and iteration tech
nique. The iteration process  yields accurate eigenvalues, but the slight e r r o r s  which 
occur in the eigenvectors usually prevent the determination of solutions above the third 
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o r  fourth mode. A possible reason f o r  this behavior is the fact that the orthogonality 
relationship is derived f rom the differential equations rather  than from the matrix 
equation. 

Other Applications of Solution Method 

The integrating matrix may be used t o  solve various other boundary-value problems 
in addition to  determining the lateral  vibration characteristics of propeller blades and 
beams. For example, the author has used the integrating matrix to develop solutions for 
the longitudinal vibration characteristics of beams, the vibration characteristics of beams 
having coupled lateral and torsional motions, the buckling characteristics of columns, 
and the lateral  displacements of beams under applied loading. When the integrating 
matrix is used to  solve f o r  the natural vibration characteristics of beams, an eigenvalue 
problem results in which the dominant eigenvalues correspond to  the lower frequencies 
without the need for determining the inverse of the coefficient matrix. Also, for the 
nonhomogeneous-beam problem, the solution fo r  the displacements is given directly with
out having to solve a set  of simultaneous equations. For coupled differential equations 
which a r e  of different order ,  such as those of a beam having bending and torsional dis
placements, the solution may be formulated by integrating each equation separately and 
;hen combining the resulting matrix equations into a single partitioned-matrix equation. 

In addition t o  boundary-value problems, the integrating matrix may be applied to 
.nitial-value problems with the solution being developed in the same manner. Although 
:he usefulness of the integrating-matrix method f o r  solving typical engineering initial-
Jalue problems has not been demonstrated, simple examples, whose exact solutions a r e  
mown, show that the method yields results which a r e  extremely accurate relative to  those 
If other methods (e.g., the Euler and center-slope methods) for  the same spacing interval. 

A s  an example, the solution to the first-order equation 
dx + G = 0 with the initial con

dition of G(x=O) = Go is found very simply to  be 

where (G} is of the same form as (w) which is defined by equation (F3b). After the 
inverse is evaluated, each 6i is related to ioby a constant. To obtain the solution 
A 

wi 
fo r  i > n, Gn becomes the initial condition and replaces ioin the solution. This 

A A 

process may be repeated indefinitely to  obtain wo,wl, . . ., i n ,  . . .,i2,,. . .,i3,, 
and so forth. It is noted that the inverse need only be computed once. Also, the solution 

may be obtained by calculating only the values Gn,G2n,G3n, . . ., if the intermediate 
values a re  not desired. For this case, the spacing interval in effect becomes nh. By 
choosing the integrating matrix corresponding to r = n = 2 with h = 0.1 and letting 
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Go = 1.0, the solution given in the following table is computed and compared with the 
exact solution: 

Exact Computed 

0 1.o 1.0 
.2 .818731 .818731 
.4 .670320 .670321 
.6 .548812 .548812 
.8 .449329 .449330 

1.o .367879 .367880 

Thus, it is seen that a very accurate solution results f rom using only a second-degree 
integrating matrix. Upon first inverting the 3 X 3 matrix of the solution formulation, each 
h 

wi was obtained simply by one multiplication. 

The integrating matrix may also be applied to initial-value problems which a r e  non
homogeneous and higher order. Furthermore,  it is not necessary that the spacing interval 

be constant as was the case in the preceding example. For the nonhomogeneous equation 

d f 
-+ w = f(x), the solution at each station is found to be given by

dx 


where Go may be replaced as before by Gn, i,,,and so  forth. Examination of the 
last row of this matrix equation shows that the solution at every nth station is given by 

n 
A 

W
( j + W  

= aGjn + 2 bifjn+i 
i = O  

where j = 0, 1,2, . . .,and a and bi a r e  constants resulting from the matrix 
multiplications. 

Discussion of Method 

The integrating-matrix method of solving differential equations is a straightforward 
approach (e.g., s e e  appendix F). That is, the differential equations are integrated very 
simply by using the integrating matrix as an operator, and then the constants of integra
tion a r e  evaluated from the boundary conditions. In the presented propeller-blade prob
lem, the development of the solution is complicated considerably by having coupled 

31 




differential equations and by the centrifugal-force effects. For boundary-value problems, 
such as those mentioned in the previous section, the solution is formulated very quickly 
by this method. The solutions a r e  expressed concisely and are readily programed by 
using standard subroutines in most instances. In obtaining the numerical solutions, the 
inputs to the computational programs are given simply by the local values of the cross-
sectional properties; the generation of stiffness or  influence coefficients is avoided. The 
computed solutions a r e  accurate because high-degree polynomials a r e  used to approxi
mate the functions which a r e  integrated. 

As noted in the Introduction, the method is applicable to  continuous problems rather 
than to discrete or  lumped mass  systems. Since the polynomial representations a r e  of 
finite degree, the method is best applied to  problems in which all functions a r e  smoothly 
varying. However, with discretion the method may be applied to, fo r  example, the prob
lem of a beam which has an abrupt change in its cross-sectional properties such as the 
stiffness o r  the distributed mass.  Problems having abrupt changes require a smaller  
interval size. For such problems it is prudent to obtain a second solution by decreasing 
the interval s ize  and/or by increasing the degree of the integrating matrix. If either of 
these changes a l te rs  the solution appreciably, then it may be concluded that the interval 
s ize  was too large in the f i rs t  solution. The varying of the interval size without changing 
the solution indicates that the solution is valid. 

CONCLUDING REMARKS 

A numerical method for determining the natural vibration characteristics of rotating 
beams, such as propeller blades, is presented. By applying the integrating matrix as an 
operator, the derived differential equations a r e  integrated and result in a matrix eigen
value problem. Two methods of solving the eigenvalue problem a r e  described, one of 
which utilizes the QR transformation and inverse iteration. The other method is a 
sweeping and iteration procedure that requires a special sweeping matrix based upon the 
derived orthogonality relationship. The stiffness properties may be transformed to  any 
pair  of orthogonal cross-sectional axes, and an explicit expression f o r  the inverse of the 
stiffness matrix is derived. 

The computed natural frequencies for a typical propeller blade were compared with 
measured frequencies. In addition, an e r r o r  analysis of the numerical method was made 
by comparing the computed vibration characteristics of a uniform beam with exact 
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solutions. These two numerical examples showed that the method of solution yields very 
accurate results. A discussion of the possible application of the solution method to other 
problems is included. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., September 18, 1970. 
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APPENDIX A 

INTEGRATING MATRICES 

The integrating matrix [I] was defined by equation (12) as 

where the subscript r denotes the degree of the assumed polynomial upon which the 
integrating matrix is based. The matrices [Ad a r e  as follows for r = 1, 2, . . ., 7: 

1 ’ 1 ,  ’ 
” \” .  

\ \ I
’ 0

’ \=’ -1!‘1 

p 0 0 0 0 - - - - - - - 01 
15 8 -1 0 0 : I  
( 0  5 8 -1 0. I I  

019 -50 1 0 0o - - - - - - - - - - q
I 

13 13 -1 0 0 I 

0 -1 13 13 

= -h 0 0. -1. 13. 
CA33 24 	

I 
I .... . . . . . I 
I 

I 

I 

0 1 -5 19 9
O -l l3 l3 -1 
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APPENDIX A - Continued 

-
0 0 0 0 0 0 0 0 - - 0 

475 1427 -798 482 -173 27 0 0 I 
I 

-27 637 1022 -258 77 -11 0 0 I 

11 -93 802 802 -93 11 0 0 I 

I 

0 11 -93 802 802 -93 11 0 .  I 

I
0 0. . --93 . 802 .. 802 -93 ... 11 .... . .. I11 .
I 	 c * . . \ . I 

I . .  
I 

. .  . .  ... ... 
. 
. ..... . \ .. .... ‘0 

- 0  -11 .-93 -802 *802 .-93 -11 
I 


I 0 -11 77 -258 1022 637 -27 

o m - - - - - - - - - - 0  27 -173 482 -798 1427 475- -
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APPENDMA - Concluded 

19067 65112 -46461 37504 -20211 6312 -863 0 0 

-863 25126 46969 -16256 7299 -2088 271 0 0 

271 -2760 30619 37504 -6771 1608 -191 0 0 

h 
CAS] =iizzi 

0 0 271 -2760 30819 37504 -6771 1608 -191 

0 0 -191 1608 -6771 37504 30819 -2760 271 

0 0 271 -2088 7299 -16256 46989 25128 -863 
1 
0 - - - - -. - - - - - - - - 0 0 -863 6312 -20211 37504 -46461 65112 19087 -

139849 -121797 123 133 -88547 41499 -11 351 1375 0 0 

47799 101349 -44797 26883 -11547 2999 -351 0 0 

351 -4183 57627 81693 -20227 7227 -1719 191 0 0 

-191 1879 -9531 68323 68323 -9531 1879 -191 0 0 

0. -. -191. 1879 -9531 68323 68323 -953; 1879 -191. 0.. . I 

, 
' - 

h I -. . -- 8-CA?3=120960 ; . - I (A7) . .. - -. I 
I 0 -191 i 8 7 9  :6531 6 i 3 2 3  66323 -9531 c879 - i91  ' - 0  
I 

0 0 -191 1879 -9531 68323 68323 -9531 1879 -191 1 
0 0 191 -1719 7227 -20227 81693 57627 -4183 351 I 
0 0 -351 2999 -11547 26883 -44797 101349 47799 -1375I' 

0 _ - - - - - - - - 0 0 1375 -11351 41499 -88547 123133 -121797 139849 36799J 
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APPENDIX B 

DERIVATION O F  THE DIFFERENTIAL EQUATIONS OF MOTION 

In this derivation of the equations of motion for a freely vibrating propeller blade, 
the propeller blade is idealized as a rotating beam having a nonuniform and unsymmet
rical  c ross  section. This beam is depicted in sketch b in the unstrained position. The 

Sketch b 

centroidal axis, which is assumed to be straight, l ies along the X-axis of the rotating 
X Y Z  orthogonal coordinate system, which has its origin fixed and is rotating about the 
Z-axis with an angular velocity of 0. The elastic axis of the beam is assumed to  be 
coincident with the centroidal axis; in other words, the bending and torsional motions a r e  
assumed to be uncoupled. This is a sound assumption for the lower vibration frequencies 
of propeller blades because the proximity of the elastic and centroidal axes renders  small  
coupling. The comparison of experimental vibration data of typical propeller blades with 
the numerical results of this and other analyses shows that the e r r o r s  induced by 
neglecting torsional motion a r e  very small  for the lower bending modes. Also, the 
secondary effects of shear deformation and rotary inertia a r e  considered negligible for 
propeller blades since the cross-sectional dimensions a r e  small  compared with the length. 
In addition, the cross-sectional properties of the beam a r e  assumed to  be continuous func
tions with no abrupt changes, and the lateral  displacements a r e  assumed to be small. 

The inertial forces  acting on a differential segment of the rotating beam a r e  deter
mined from the acceleration vector of the centroid of the segment. The effect of the lon
gitudinal displacement of the centroid on the inertial forces is small  and is assumed 
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Z 

ci; 
Y 

0 + * x  
1 X 


Sketch c 

negligible. The position vector (see sketch c) to  the centroid of a general differential 
segment of the strained beam is given by 

where x is the body-axis coordinate in the X-direction for the unstrained beam. Also, 
v and w a r e  functions of x and represent the elastic displacements of the centroidal 
axis in the Y- and Z-directions, respectively. The absolute angular velocity of the 
rotating system is assumed to  be constant and is given by = i lk .  Differentiating equa
tion (Bl) twice with respect to  t ime gives the acceleration vector as 

It can be shown that the Coriolis acceleration t e r m  may be neglected. The natural 
frequencies which a r e  of particular interest to  propeller-blade analyses have the same 
order of magnitude as the rotational speed a. If harmonic motion with the frequency 
being the same order as the rotational speed is assumed, the Coriolis acceleration t e r m  
is obviously negligible when compared with Q2x since the amplitude of v is much l e s s  
than the magnitude of x for small  displacements. 

Since the acceleration components are known, the reversed effective inertial forces 
acting in the X-, Y-, and Z-directions on a differential segment of length dx a r e  

n2xm dx, (.2. - 2 ) m  d x ,  and a 
2 

m dx, respectively, where m is the distributed 
at2 

mass of the beam. 
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Centroidal  

dx 


Sketch d 

The inertial forces,  internal forces,  and internal moments lying the the XZ-plane 
are shown acting on a differential beam segment in sketch d where T is axial tensile 
force, V is shear force, and M is bending moment. The summation of forces in the 
X-direction and in  the Z-direction gives the two following equations: 

- - + 5 2 m x = O  (B3)aT 2 
ax 

2a waVZ m-=O 
ax at2 

After higher order t e r m s  a r e  dropped, the summation of moments in the Y-direction 
yields 

vz=-aMY + T -aw 
ax ax 

Substituting equation (B5) into equation (B4) gives 

e 


2a”My + &p 2)- In -$a w  = 0 
ax2 
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APPENDIX B - Continued 

Centroidal axis 

Z 

Sketch e 

Sketch e shows the forces and moments acting on the segment in the XY-plane. By 
proceeding in the same manner as before, the summation of forces in the Y-direction and 
the summation of moments in the Z-direction yields 

Upon substitution of the expression for Vy,  equation (B7) becomes 

Relations for the bending moments MY and MZ in t e r m s  of the displacements 
v and w may be determined by integrating over the cross-sectional a r e a  the products 
of the longitudinal stress and each of the body-axis coordinates of which the s t r e s s  is a 
function. It is necessary to  determine f i r s t  an expression for the longitudinal strain over 
the cross  section. The cross-sectional body-axis coordinates are y and z which are 
parallel to  the Y- and Z-axes, respectively, when the beam is in the unstrained condition. 
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APPENDIX B - Continued 

Assuming that plane sections remain plane and making small-angle assumptions 
for W/ax and &I/&, which define the slope of the centroidal axis, gives the longi
tudinal displacement of a point defined by y and z within a cross  section as 

A av &I u = u - y a x - z ax 

where u is the elastic displacement of the centroidal axis in the X-direction. Since the 
aGlongitudinal strain is defined by E = - equation (B10)leads toax' 

From Hooke's law, the longitudinal stress is merely the product of the strain and thc 
modulus of elasticity since the normal s t r e s ses  are zero. If the elastic modulus E is 
assumed to be constant over the c ross  section, the bending moments a r e  given by 

4 

Substituting equation (B11)into equations (B12)and integrating over the cross-sectional 
area yields 

2 2a w  a v
M y  = -EIyy -- EIyz 

ax2 ax2 

where the moments and product of inertia a r e  defined by 
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The substitution of equations (B13)and (B14)into equations (B6)and (B9),respec
tively, gives 

An examination of equations (B16)shows that the two displacements v and w 
are coupled by the product of inertia Iyz of the unsymmetrical cross  section. There

fore ,  for Iyz # 0, any deflection in the Y-direction has associated with it a deflection in 
the Z-direction. The static coupling between the lateral displacements may be verified 
by using the bending-moment relations of equations (B13)and (B14)or  by using directly 
the s t ra in  expression of equation (B11). 

-By assuming harmonic motion such that v = veiwt and w = weiwt, the equations 

of motion become 

where o is the natural vibration frequency. These two equations in conjunction with 
the auxiliary relation of equation (B3),which may be rewritten as 

-+a 2m x = OdT 
dx 


are the governing differential equations of motion. 
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APPENDIX C 

TRANSFORMATION AND INVERSE O F  THE STIFFNESS MATRIX 

It may often be desirable to express the stiffness matrix [S] in t e rms  of the 
moments and product of inertia about a pair of orthogonal cross-sectional axes other than 
the axes associated with the y,z body coordinates. As illustrated in sketch f ,  y' 

Sketch f 

and z' a re  defined to be the coordinates of a reference system which is obtained by the 
rotation of the yz reference through an angle p. The moments and product of inertia 
in the primed system a r e  defined 

IY'Y' =I: Z')2dA'1 
I y y  = SAy'z' dA'J 

Also, the coordinate transformation relations a r e  

y' = y cos p + z sin p 

z' = -y sin p + z cos p 

By substituting equations (C2) into equations (Cl),  noting that the Jacobian relating the 
differential a reas  in the primed and unprimed systems is equal to unity, and using the 
definitions of equations (B15), the moments and products of inertia of the two systems 
a r e  found to be related by 
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APPENDIX C - Continued 

IYvy'= Iyy cos 2p + I,, s in2p - 21yz sin p cos p 

IZ1,1 = In s in2p + I,, cos2p + 21yz s in  p cos p 

'~ ~ = v ~ - I,,)sin p cos p + cos2 
p - s in  p2 d  

From equations (C3), the following matrix identity may be written: 

where 

(EIY'Y') 1 
\ \ 

\ I \ 

[sj = 

bl = 
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APPENDIX C - Continued 

and [S] is defined by equation (22d). Since the transformation matrix [L] is orthog
onal, its inverse is equal t o  its transpose; thus, f rom equation (C4a) the stiffness matrix 
in  the yz reference may be expressed in t e r m s  of the stiffness values in the y'z' 
reference by 

Also, taking the inverse of both sides of equation (C5) gives the transformation of the 
inverse of the stiffness matrix as 

[SI-' = [L] [q-'[L]' 

Since it is desirable to avoid the inversion of a matrix whenever possible, an explicit 
expression will be derived for the inverse of the stiffness matrix which appears in the 
eigenvalue problem of equations (45). Consider the matrix [A] given in equation (C7) 
which is of the same form as the matrices [SI and [Sg defined, respectively, by equa
tions (22d) and (C4b). However, in the development which follows it is not necessary for 
[A] t o  be symmetric as a re  [S] and [ S j  . 

[AI = 

"n+l, 1 


an+2 ,2
.. 

an+i ,.i 


% 

a . 
2n,n 


I 

l a 
1,n+l 1

I 


I 


I 


I 


I 


I 


I
-
I 


I 


1 


I 


I 

I 

I 

I 

I 

I 

In the above matrix [A] all off-diagonal elements in each of the four n-square partition 
matrices a r e  zero and i = 1,  2,  . . .,n. 

Notice that the cofactor of each zero  element of [A) is zero  since the minor of 
each such element contains two rows, as well as two columns, which a r e  proportional. 
Let Q!

j ,k 
represent the cofactor of the element a

j ,k' 
where j,k = 1, 2,  . . ., 2n. Then 

the inverse of the matrix [A] is given by 
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APPENDIX C - Continued 

1 9 1  
CYn+l,l  

CY2,2
’ 

I 

I 
an+2,2’ ’ ’ 1 ’ 

’ C Y . .1,,1 
1 

I 
I 

CY n+i,i 
\ ’ ’ 

I 

CY 2,n+2
’ 

I CY n+2 ,n+2
’ .’ ’ 

I 
I 

.’ ’ I 

CYi,n+i I ’ 
\ ’ 

’ 

n+i ,n+i 
I .’ I ’ 

Qn,;ln: a2n,21 

-1 
The cofactor in the upper-left partition of [A] is equal to  the minor of 

the element a .
191

. with a sign. Since the minor of ai,i is equal to the sum of the pro
ducts of the elements of the (n + i - 1)th row (or column) of the minor and their  respec
tive cofactors, the cofactor ai,i may be expressed by 

where Mi,i is the minor of the element ai,i and Di is the determinant of the 

matrix [A] with the ith and (n + i)th rows and the ith and (n + i)th columns removed. 

In a similar manner, the cofactors of the other partitions a r e  found to  be 

The determinant of [A] may be expressed as the sum of the products of the ele
ments of the ith row and their respective cofactors. Thus, 

46 




- 

APPENDIX C - Continued 

-ICAI1 = ai,iai,i + ai,n+iai,n+i - (ai,ian+i,n+i - ai,n+ian+i,i)Di (C10) 

From equations (C9) and (ClO), it is seen that the elements in [A]-' of equa
tion (C8)are given by 

ai,i - -an+i,n+i (Cl la)I [A] I "i,ian+i,n+i - ai,n+ian+i,i 

ai,n+i - -%+i,i (Cllb)1 [All - ai,ian+i,n+i - "i,n+ian+i,i 

%+i,i -- -ai ,n+i (Cl lc)

1 [A] I ai,ian+i,n+i - ai,n+ian+i,i 

@n+i,n+i-- ai,i (Clld)1 [All ai,ian+i,n+i - ai,n+ian+i,i 

Substitution of the corresponding elements of equation (C4b) into equations (C11) and 
then substitution of the results into equation (C8)gives the inverse of [Sq as 

(C12) 

It is obvious that a similar  expression may be written for [SIm1. 
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APPENDIX C - Concluded 

If the angle p represents the orientation of a principal axis of inertia, then since 

Iy'z' = 0, [SI-' reduces to  the following diagonal matrix: 

I 

I 

I 

I 

I 

I. 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
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APPENDIX D 

DERIVATION O F  THE ORTHOGONALITY RELATION 

A knowledge of the orthogonality relation between the natural modes is important 
t o  the analysis of many vibration problems. The orthogonality relation is often used to  
obtain the solutions of eigenvalue problems by iteration methods. Also, the relation is a 
very useful tool in modal s e r i e s  solutions of response problems. Since the displace
ments w and v are coupled, the conventional orthogonality relation for beams in 
bending is not valid. 

The differential equations of motion for the r th  mode a r e  

d x d x 
&[EIyz d2wo+ EI,, -dh] -"f ""3 - [w2(r) + G2)mv(r) = 0 (D2)
dx2 dx2 dx2 

Multiplying equation (Dl) by w(s)dx and equation (D2) by v(s)dx, where w(s) and 
v(s) a r e  the displacements of the s th  mode, and then integrating both equations from xo 
t o  % gives 

and 
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APPENDIX D - Continued 

Performing the integrations in  equations (D3) and (D4)by parts and applying the boundary 
conditions yields 

Jxn[Elyyd2wo+ EIyz 
xO dx2 

and 

Jxn[EIya d2wo+ EI,, dav(r)dav(s)&dx2 

xO dx2 1 dx2 

In like manner, two additional relations s imilar  t o  equations (D5) and (D6) may be 
obtained. First the differential equations a r e  written for the sth mode as 

2w(s) + EI,, 91- &E 91- [w2(s) + Q2]mv(s) = 0 (D8) 

Equations (D7) and (D8) may be multiplied by w(r)dx and v(r)dx, respectively, and then 
integrated from xo t o  Xn. Making the multiplications, performing the integration by 
parts,  and applying the boundary conditions yields 

d2v(s) d2w(r) dx+ EIyz 
dx2 1 dx2 
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APPENDIXD - Concluded 

and 

Subtracting the sum of equations (D5) and (D6) from the sum of equations (D9) 
and (D10) gives 

If the natural vibration frequencies a r e  assumed to be different for the two modes, then 
for r f s, 

Jxn m[w(r)w(s) + v(r)v(sd cix = 0 
xO 

which is the desired orthogonality relation. 
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APPENDIX E 

SWEEPING AND ITERATION PROCEDURF: 

The orthogonality relation derived in appendix D may by use  of the integrating 
matrix be expressed in matrix notation as 

where the row matrix LQJ, which consists of two partition matrices with (n + 1) elements 
in each, is given by 

l Q ] = b  . . .  0 1 ;I O . . .  O 1 J  (E 1b) 

An arbitrary vector {a) may be expressed as a linear combination of the inde
pendent eigenvectors by 

In equation (E2) the normalized eigenvectors {cp(jj) correspond t o  the eigenvalues X(j )  
which decrease in magnitude as j varies f rom-1 t o  (2n + 2). An expression for the 
scaling constants c

j 
may be obtained by premultiplying equation (E2) by 

and applying the orthogonality relation given by equation (El). Hence, 

If the first ( s  - 1)modes are assumed t o  be known, the s th  mode is obtained by first 
rewriting equation (E2) as 

Upon substituting equation (E3) for c l ,  c2, . . ., cSml, equation (E4) becomes 
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APPENDIX E - Continued 

where 

The square matrix [q(sfl is the desired "sweeping" matrix. For computational pur
poses, it is expressed conveniently by 

where [@(lg is the identity matrix. 

Premultiplying equation (E5) by [N] and substituting equation (46a) into the t e rms  
on the right-hand side of the resulting equation yields 

Defining LN(s,J as 

pSq .= c~3p(~,3 
and premultiplying equation (E7) by [N(sg gives 

When the orthogonality relationship of equation (El) is applied and equation (46a) is sub
stituted into the resulting t e r m s  on the right-hand side, equation (E9)becomes 
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APPENDIX E - Continued 

+ . . . + c ~ ~ + ~ x2(2n + 2)(q(2n + 2 0  

The repeated premultiplication of equation (E7) by [N(sU gives 

For k sufficiently large, equation ( E l l )  reduces t o  

since X(s) > X(s + 1) > . . . > X(2n + 2). It is seen that the product obtained by repeated 
premultiplication of an arbi t rary vector by [N(s)] converges, as k increases,  on the 

normalized eigenvector {q(s$ t imes a scalar. Hence, the normalized vector of 

[N(sg "{a) is an eigenvector of the problem since it has been shown to  equal (cp(s)), 

provided that k is sufficiently large. By applying the orthogonality relationship and 
using equation (46a), the premultiplication by [N(sfl of the normalized eigenvector 

{q(s,> obtained by the procedure just described yields 

and thus, the corresponding eigenvalue is obtained. 

After each premultiplication of an arbitrary vector by [N(s)l, the resulting vector 
may be normalized without affecting the convergence of the process. In the computational 
solution of the problem, the normalization of the vector after each premultiplication is an 
expedient method in that it permits a check on the convergence after each premultiplica
tion. From equation (E13) it is known that a solution is obtained when the premultiplica
tion of the normalized vector by [N(su yields the same normalized vector within cer
tain specified computational accuracy limits. 

The iteration procedure described for  obtaining the sth mode may be used to  deter
mine the natural vibration characteristics of each mode. Thus, the solutions of the 
eigenvalue problem are given by the iteration of equation (E13) since it is proved that 
such iteration results in convergence t o  the sth mode. 
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APPENDIX F 

VIBRATIONS O F  A NONROTATING CANTILEVERED BEAM 

The differential equation of motion for a nonrotating beam vibrating freely in one 
plane is 

If the beam is assumed to  be cantilevered, the boundary conditions are 

= o21x=xo 

(E1 2)lx=xn 
= o  

= o  
x=xn 

The differential equation may be written for each of a chosen set  of equally spaced 
stations defined by xi = xo + ih where h is the spacing interval and i = 0, 1, 2, . . . , n. 
Thus equation (F l )  determines a se t  of (n + 1) equations which may be combined into a 
matrix equation as 

where 
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APPENDIX F - Continued 

1 

= 
* . 

FiI = ml.. 
*mn1 

Equation (F3a) may now be integrated four t imes  by using the integrating matrix as 
an operator. However, after the second integration it is necessary to premultiply the 
equation by the inverse of the stiffness matrix. The result after each of the successive 
integrations is given in the following equations: 

+ k2[4[gj-1(1) + k3{l) = {O) 
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APPENDIX F - Concluded 

where ki a r e  constants of integration. Also, (l} and (O} are (n + 1)element column 
matrices with all elements 1 and 0, respectively. The inverse of the stiffness matrix is 
given by 

. 
\ 

\ 

For the purpose of evaluating the constants of integration ki, the following matrix 
operators which contain (n + 1)elements a r e  defined. 

p3.J=Lo . . .  0 0 lJ 

Multiplying equation (F4)by LBn] and applying the boundary condition given by 
equation (F2d) yields 

Multiplying equation (F5) by LBnJ , applying the boundary condition of equation ( F ~ c ) ,and 
substituting equation (F10) gives k2 as 

By multiplying equations (F6) and (F7) by Po] and applying the remaining boundary 
conditions, it is found that 

k3 = k4 = 0 (F12) 

The following eigenvalue problem results by substituting equations (FlO), ( F l l ) ,  
and (F12) into equation (F7), simplifying, and dividing by w2: 

(F13a) 

where 

(F13b) 
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TABLE 1.- PHYSICAL PROPERTIES OF PROPELLER BLADE 


(a) U.S. Customary Units 

rxo = 6 in.; h = 2 in1 
L J 

Station 
number, 

i 
.

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

. _ _  

Station 
number)

i 
- .  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

m, EIy' y' 9 

lb-sec2/in2 lb-in2 
-. ~ 

1.026 X 10-3 0.200 x 106 
.696 .110 
.660 .083 
.608 .058 
.564 .042 
.535 .031 
.520 .027 
.506 .026 
.498 .025 
.498 .024 

.. .. . .. 

(b) SI Units 

63 X 106 

49 

46 

44 

43 

43 

44 

47 

51 

56 


~~~ 

30.5 
25.2 
20.0 
14.8 
9.6 
4.7 
0 

-4.2 
-7.6 

-10.0 

30.5 
25.2 
20.0 
14.8 
9.6 
4.7 
0 

-4.2 
-7.6 

-10.0 

c.0 = 0.1524 m; h = 0.0508 ml 

, .-. . 

m7 
N-sec2/m2 

7.07 0.574 X l o 3  
4.80 .316 
4.55 .238 
4.19 .166 
3.89 .121 
3.69 .089 
3.59 .077 
3.49 .075 
3.43 .072 
3.43 .069 

181 x 103 

141 

132 

126 

123 

123 

126 

135 

146 

161 
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TABLE 2.- NATURAL VIBRATION FREQUENCIES O F  PROPELLER BLADE 

Mode 1 
Experimenta1 

. - .  -

Computed 
Percei 

e r ror  

0 40.08 40.77 1.7 
2609 58.73 59.8 5 1.9 
3583 76.52 78.08 2.0 
4486 93.07 95.03 2.1 
5884 117.50 121.24 3.2 

~ ---_ . __ 

2 1589 107.53 109.05 1.4 
2614 137.02 139.03 1.5 
3585 170.60 171.41 .5 
4537 202.53 204.40 .9 

- _ _  

_ .
I 

20 	 1 1568 37.66 38.21 1.5 
2585 53.44 54.32 1.6 
4513 83.74 85.37 1.9 
6016 106.66 109.46 2.6 
6983 122.08 124.86 2.3 

2 	 1576 107.42 108.62 1.1 
2561 135.45 137.26 1.3 

c~--
___ 
33.10 34.30 3.6 
46.95 47.65 1.5 
72.28 73.98 2.4 
92.93 94.01 1.2 

~ 

107.58 106.05 -1.4 
133.93 135.71 1.3 
167.69 170.48 1.7 

~~ ~ ... 

21.85 
86.32 
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4 1  
-

0 

0.2 

. . 

0.4 

-

0.6 

0.8 

1.0 
. 

_ _  

X/l 

0 

0.2 

-

0.4 

0.6 

TABLE 3.- COMPARISON O F  COMPUTED FIRST-MODE DISPLACEMENTS FOR 

n = 10, 25 AND r = 1, 2, . . .,7 WITH EXACT-SOLUTION VALUES 

Exact Number Degree of integrating mat r ix  Iofsolution intervals Seventh Sixth Fifth Fourth Thi rd  Second First 
~ 

0 25, 10 0 0 0 0 0 0 0 
-

0.12774 25 0.12774 0.12774 0.12774 0.12774 0.12774 0.12774 0.12754 
10 .12774 .12774 .12774 .12774 .12775 .12778 .12649 

~ 

0.45977 25 0.45977 0.45977 0.45977 0.45977 0.45977 0.45978 0.4 5946 
10 .45977 .45977 .45977 .45977 .45977 .45986 .45782 

0.92227 25 0.92227 0.92227 0.92227 0.92227 0.92227 0.92228 0.92193 
10 .92227 .92227 .92227 .92227 .92227 .9%237 .92013 

~ 

1.45096 	 25 1.45096 1.45096 1.45096 1.45096 1.45096 1.45096 1.45070 
10 1.45096 1.4 5096 1.4 5096 1.45096 1.4509 5 1.45099 1.44934 

.... ~. - _ _  
2.00000 25, 10 2.00000 2.00000 2.00000 2.00000 2.00000 2 .ooooo 2.00000 

~~ 

TABLE 4.- COMPARISON O F  COMPUTED SECOND-MODE DISPLACEMENTS FOR 

n = 10,25 AND r = 1, 2, . . ., 7 WITH EXACT-SOLUTION VALUES 

- -

Exact Number 
ofsolution interval; Seventh 

0 25, 10 0 

0.60211 	 25 0.60211 
10 .60211 

- .  

1.36694 25 1.36694 
10 1.36693 
_. 

1.17895 25 1.17895 
10 1.17894 

.-_ 

Degree of integrating mat r ix  
_. 

Sixth I Fifth 1 Fourth I Third  Second First 

0 0 0 0 
.. _ ~- .-

0.60211 0.6021 1 0.60211 0.60212 
.60210 .60211 .60255 .60262 
- .  _ _ _  

1.36694 1.36694 1.36695 1.36694 
1.36694 1.36699 1.36757 1.36667 

0.8 -0.14007 	 25 -0.14007 
10 -.14007 

. .  

1.0 2.00000 25, 10 2.00000 
~~ 
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TABLE 5.- COMPARISON O F  COMPUTED THIRD-MODE DISPLACEMENTS FOR 

n = 10,25 AND r = 1,2, . . .,7 WITH EXACT-SOLUTION VALUES 

Degree of integrating matrix 

-

0 

1.05185 1.05196 1.05180 1.05735 1.04898 
1.05744 1.04461 1.11491 1.03436 __ 

-0.94760 -0.94748 -0.95061 -0.95048 
-.94985 -.94014 -.97675 -.96540 I 

-0.78975 

2.00000 I 25,;O 2.00000 2.00000 1 2.00000 
__- - .~.. -

TABLE 6.- COMPARISON O F  COMPUTED FOURTH-MODE DISPLACEMENTS FOR 

n = 10, 25 AND r = 1, 2, . . ., 7 WITH EXACT-SOLUTION VALUES 

~-
Degree of integrating matrix _ _  ~. . . -

Third -Second 1 - F L r r  
__ .~~ ~ . . -. ___ 
0 0 
_I~_.. _ - ~ 

0 0 _~__ 0 0 
___.. .- - __ 

0.2 1.50758 1.50757 1.50762 1.50737 1.54968 1.49965 
1.51359 1.54398 1.46467 2.04705 1.45443 

- -__ 
0.4 -0.63112 -0.63116 -0.64391 -0.63254 

-.61936 -.77565 -.63891 
.

-0.65303 -0.66091 -0.65156 
-.64129 -.72731 -.64517 
- -~ 

0.8 1.28608 	 1.28612 1.28641 1.28592 1.29194 1.29399 
1.30332 1.27247 1.24597 1.28186 1.33918 

. .___ 

2.00000 2.00000 2.00000 2.00000 2.00000I_ _  - .- -- .__ __ 

~ - .-. 

~ - .. _
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Figure 1.- Computed and measured natural vibration fre
quencies as a function of rotational speed. 
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Figure 2.- Modal displacements at the equally spaced stations for the propeller blade having a pitch angle 
of 20° at x = 0.75R. 
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Figure 3.- Percent e r r o r  of computed natural frequencies of uniform beam 
as a function of n for the first-degree integrating matrix. 
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Figure 4.- Percent error of computed natural frequencies of uniform beam 
as a function of n for the second-degree integrating matrix. 
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Figure 5.- Percent error of computed natural frequencies of uniform beam 
as a function of n for the third-degree integrating matrix. 
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Figure 	6.- Percent.error of computed natural frequencies of uniform beam 
as a function of n for the fourth-degree integrating matrix. 
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Figure 7.- Percent error of computed natural frequencies of uniform beam 
as a function of n for the fifth-degree integrating matrix. 
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Figure 8.- Percent e r r o r  of computed natural frequencies of uniform beam 
as a function of n for the sixth-degree integrating matrix. 
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Figure 9.- Percent error of computed natural frequencies of uniform beam 
as a function of n for the seventh-degree integrating matrix. 

NASA-Langley, 1970 -32 L-5539 71 



AERONAUTICSNATIONAL AND SPACEADMINISTRATION 
WASHINGTON, D. C. 20546 

OFFICIAL BUSINESS FIRST CLASS MAIL 

POSTAGE AND FEES PA 
NATIONAL AERONAUTICS 

SPACE ADMINISTRATIO 

0 3 U  O C 1  53 41 3CS 70316 00903  

A I R  F C K C E  w E A P O N S  L A B O R A T O R Y  /WLOL/ 
K I R T L A N D  A F B ,  N E N  M E X I C O  8 7 1 1 7  

A T T  E .  L O U  BObJMAN, CHIEFVTECH. L I B R A R Y  

POSTMASTER: 	 If Undeliverable (Section
Postal Manual) Do Not R 

“The  aeronnziticnl and space nctivities of the United Stntes shall be 
conducted so ns t o  contribute . . . t o  the expnnsion of h u w a n  knowl
edge of phenoniena in the  ntntosphere and space. The Administrntion 
shnll provide for the widest prncticable and appropriate disseiizinatioiz 
of inforninfion concerning its mtivit ies and the resalts thereof.” 

-NATIONALAERONAUTICSAND SPACE ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and 
technical information considered important, 
complete, and a lasting contribution to existing 
knowledge. 

TECHNICAL NOTES: Information less broad 
in scope but nevertheless of importance as a 
contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: 
Information receiving limited distribution 
because of preliminary data, security classifica
tion, or other reasons. 

CONTRACTOR REPORTS: Scientific and 
technical information generated under a NASA 
contract or grant and considered an important 
contribution to existing knowledge. 

TECHNICAL TRANSLATIONS: Information 

published in a foreign language considered 

to merit NASA distribution in English. 


SPECIAL PUBLICATIONS: Information 

derived from or of value to NASA activities. 

Publications include conference proceedings, 

monographs, data compilations, handbooks, 

sourcebooks, and special bibliographies. 


TECHNOLOGY UTILIZATION 

PUBLICATIONS: Information on technology 

used by NASA that may be of particular 

interest in commercial and other non-aerospace 

applications. Publications include Tech Briefs, 

Technology Utilization Reports and N ~ ~ ~ ~ , 

and Technology Surveys. 


Details on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 


NATIONAL AERO NAUT1C S  AND SPACE ADMINISTRATION 

Washington, D.C. 20546 


